Abstract
Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence of the fusion (F0) protein cleavage site. Full-length NDV cDNA clone pNDFL was used to generate infectious NDV with defined mutations in the F0 cleavage site (RRQRR downward arrow L, GRQGR downward arrow F, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F). All the mutants were viable and the mutations were maintained after virus propagation in embryonated eggs. The mutants showed single-cell infections on chicken embryo fibroblasts, which suggested that they were non-virulent. However, virulence tests in 1-day-old chickens resulted in an intracerebral pathogenicity index (ICPI) between 0 and 1.3. Moreover, virulent virus was isolated from chickens that had died in the virulence tests. Subsequent sequence analysis showed that the mutants RRQRR downward arrow L, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F gave rise to the appearance of revertants containing the virulent cleavage site RRQ(K/R)R downward arrow F and an ICPI of 1.4 or higher. This indicated that reversion to virulence was caused by alteration of the amino acid sequence of the F0 cleavage site from a non-virulent to a virulent type. Furthermore, the ICPI of the revertants was higher than that of cDNA-derived strain NDFLtag, which has the same cleavage site, RRQRR downward arrow F (ICPI=1.3). NDFLtag(Pass), which was isolated from dead chickens after intracerebral inoculation of NDFLtag, also showed an increase in the ICPI from 1.3 to 1.5. This study proves that reversion to virulence occurs within non-virulent NDV populations and that the virulence may increase after one passage in chicken brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.