Abstract
The influence of sintering parameters on the microstructure, phase composition and mechanical property of the Ti3SiC2/Cu composites sintered by spark plasma sintering technique was investigated and the related sintering mechanism was clarified in detail. Results indicated that during the heating process, one part of the high energy adsorbed by the composites let Cu melt and fill the gaps inside the composites. Meanwhile, there’s different molten condition about Cu duel to different heating temperature that cause Cu fill in the most space between Ti3SiC2 particles. The other part of the energy caused to the local high temperature, contributing for the chemical reaction and the formation of TiCx and Cu3Si. Therefore, at the same heating rate, the composites showed better mechanical property and higher density with a longer heating time. The heating stage played an important role in the change of the mechanical property, microstructure and volume of the composites. During the holding stage, because the amount of the reactants significantly decreased, the related chemical reaction got slow and the energy needed during this stage was lower than that during the heating stage. And the particle of Ti3SiC2 need more time for moving to the space of Cu. Therefore, the higher the holding temperature, the more significant was the diffusion of the phases. The more uniform the phases, the higher was the density. When heating temperature (higher than holding temperature) cause Cu complete melt and holding temperature keep the Cu in semi-melt, there will be a more effective sintering method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.