Abstract

AbstractNew alternative jet fuels have provided many advantages in the aviation industry, especially in terms of economics and environment. However, fuel–seal compatibility is one of the major issues that restricts alternative fuel advancement into the market. Thus, to help understand and solve the problem, this study examines the swelling effect of prepared and non-prepared O-rings in different fuels and aromatic species. Stress relaxation experiments were carried out to evaluate seal compatibility under compression, which mimics engine operation conditions. Seals were compressed and immersed in a variety of fuels and their blends for about 90h while maintaining a constant temperature 30°C and constant compression force of 25% seal thickness. The two types of elastomers investigated were fluorosilicone and nitrile O-rings, which are predominantly used in the aviation industry. Meanwhile, three different fuels and aromatic species were utilised as the variables in the experiments. The fuels used were Jet-A1, SPK and SHJFCS, while the aromatic species added were propyl benzene, tetralin and p-xylene. The swelling effects were determined from the P/Po value. Results indicate that Jet-A1 has the highest swelling effect, followed by SHJFCS and SPK. It was observed that the higher the percentage of aromatics in fuel, the higher the rate of swelling. Furthermore, prepared seals had a lower swelling rate than did non-prepared seals. Meanwhile, the intensity of the swelling effect in the Jet-A1-SHJFCS blends was in the order of 60/40, 85/15 and 50/50 blend. The work done in this study will aid in the selection of suitable aromatic species in future fuels. The novelty of this research lies in the determination of the appropriate amount of aromatic content as well as the selection of type of aromatic and its mixture fuel. Moreover, the various proportions of fuel blends with aromatic are investigated. The primary aim of this study is to understand the behaviour of prepared and non-prepared seals, and their compatibility with alternative fuels.

Highlights

  • Fossil fuels are categorised as non-renewable sources of energy

  • Synthetic Paraffinic Kerosene (SPK)-Si JetA1-Si Severely Hydro-processed Jet Fuel from Conventional Source (SHJFCS)-Si aromatics used in this study

  • Since there are no aromatics in SPK, neither elastomer immerged in SPK exhibited swelling; the nitrile O-ring exhibited swelling only in Jet-A1 and SHJFCS

Read more

Summary

Introduction

Fossil fuels are categorised as non-renewable sources of energy. With the depletion of non-renewable sources emerges the need to shift to renewable energy sources. Advancements in the use of sustainable fuels are impacted majorly by the cost increase in crude oil and market fluctuations. Hileman and Stratton[1] outlined the production cost and price of jet fuel from data obtained from the EIA, demonstrating the instability in the price of crude oil. This later leads to a decline in oil production, further aggravating the rise in demand. An even more potential driver for sustainable fuels is growing environmental concern. Considerations over fuels and their emissions lead to the development of renewable fuel and so-called alternative fuels

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.