Abstract

Abstract Flashback with subsequent flame anchoring (FA) is an inherent risk of lean premixed gas turbine combustors operated with highly reactive fuel. The present study has been performed to characterize flame stabilization in the premixing zone of a lean premixed swirl stabilized burner and to identify critical combustion characteristics. An optically accessible burner was used for experimental investigations under atmospheric pressure and elevated preheat temperatures. The air mass flow rate, global equivalence ratio and preheat temperature were systematically varied to identify critical operating parameters. Hydrogen-natural gas mixtures with hydrogen mass fractions from 15 to 100 % were studied to evaluate the impact of fuel reactivity. The air-fuel mixture was ignited with a focused single laser pulse to trigger FA in the premixing zone during steady operation. High speed imaging with OH*-chemiluminescence were applied to observe flame characteristics and evaluate flame anchoring propensity. Flame anchoring limits (FAL) are reported in terms of the minimum global equivalence ratio at which the flame was blown out of the premixing zone within a critical time period. A comparison of characteristic time scales at FAL shows that the main impact during flame anchoring is given by the fuel reactivity and to some ex tent by preheat temperature. A Damköhler criterion is derived from the FAL that allows prediction of FA propensity based on operating conditions and 1-D reacting simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.