Abstract
Friction Stir Welding (FSW) is a solid-state welding process used for welding similar and dissimilar materials. FSW is especially suitable to join sheet Al alloys, and this technique allows different material couples to be welded continuously. In this study, 1050 Al alloys and commercially pure Cu were produced at three different tool rotation speeds (630, 1330, 2440 rpm) and three different tool traverse speeds (20, 30, 50 mm/min) with four different tool position (0, 1, 1.5, 2 mm) by friction stir welding. The influence of the welding parameters on the microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine the mechanical properties. The microstructures of the weld zone were investigated by optical microscope and scanning electron microscope (SEM) and were analyzed in an energy dispersed spectrometer (EDS). Intermetallic phases were detected based on the X-ray diffraction (XRD) analysis results that evaluated the formation of phases in the weld zone. When the welding performance of the friction stir welded butt joints was evaluated, the maximum value obtained was 89.55% with a 1330 rpm tool rotational speed, 20 mm/min traverse speed and a 1 mm tool position configuration. The higher tensile strength is attributed to the dispersion strengthening of the fine Cu particles distributed over the Al material in the stir zone region.
Highlights
Friction Stir Welding (FSW), was invented and patented by The Welding Institute UK (TWI)in 1991 [1]
FSW as a solid-state process has gained a lot of importance due to its advantages such as providing good mechanical properties, especially with aluminum alloy, and quality joints [2,3]
Cross sections perpendicular to the welding direction, and the bottom Images and topfrom surfaces of joints that are formed with dissimilar welding parameters were photographed
Summary
FSW as a solid-state process has gained a lot of importance due to its advantages such as providing good mechanical properties, especially with aluminum alloy, and quality joints [2,3]. This method has advantages compared to conventional welding methods since there is no distortion, porosity and cracks during the application [4,5]. Studies on joining dissimilar materials have been carried out [6,7,8]. The accurate joining of dissimilar materials is very important in terms of its use in important fields including the chemical, nuclear, aerospace, transportation, power generation, and electronics industries [9,10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.