Abstract

ABSTRACTIn this research, a copper based surface composite was fabricated through dispersing hybrid composite particles onto its surface through friction stir processing (FSP) technique. Optical micrographs and scanning electron microscopy images indicates finer refinement of grains and particles dispersion into matrix along with its bonding and particle separation. As per the outcomes of microhardness analysis, hardness of the developed surface composite shows increment with increase in dispersion of volume fraction of hybrid particles. Strength of the developed copper surface composite exhibited a positive trend with introduction of hybrid reinforcement particle onto the surface of the composite but yet again ductility reduced. Wear resistance of the composite increased with reinforcement addition and the same was supported through worn out surface morphology. Fluctuations in friction coefficient value reduced with increase in particles, as for the presence in BN particles while the average frictional coefficient value was observed increasing. A reduction in corrosion rate was observed with increase in reinforcement particle dispersion onto copper matrix through FSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call