Abstract

The increasing adoption of PEEK (polyetheretherketone) in many industrial applications has promoted intense research to optimize its lubrication along with the development of friction reducers (FRs), additives that help in reducing fuel consumption and, consequently, CO2 emissions. In this study, the effect of FRs in improving the lubrication of PEEK–steel couplings was evaluated and their mechanism studied using the Mini Traction Machine (MTM) tribometer. Different types of FRs (such as Molybdenum dithiocarbamate, glycerol monooleate, amine and polymeric derivatives) and coupling combinations (steel/steel, steel/PEEK and PEEK/steel) were considered. The oil samples were evaluated as fresh and after a rubbing time considering different operative conditions (from high to low T, fixed load and type of contact motion), and a measurement of the tribofilm was acquired. The experimental campaign showed a ranking among FRs friction-reducing behavior and, in some cases, a synergistic effect was noted between the tribofilm containing the friction modifier and the PEEK surface. Comparing the top performing FRs with reference oil showed a reduction in friction of 22%, 21% and 37%, respectively, in steel–steel, PEEK–steel and steel–PEEK couplings, while in the standard steel–steel coupling, two out of four FRs did not reduce the friction. After conditioning in the presence of PEEK, all friction-modifier additives reduced the friction effectively. This demonstrates the promising performance of PEEK, its compatibility with friction-reducing additives, and its applicability to sliding machine parts in order to improve efficiency and thus reduce CO2 emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call