Abstract

There has been a lot of attention on the effect of lubricant additives on the friction at carbon coated surfaces. But only few papers have addressed the effect of additives on the durability of some diamondlike carbon DLC coatings. This paper presents a systematic study assessing the additive/additive and additive/surface interactions, and their influences on the durability of a low hydrogen-containing (15 at. % hydrogen) metal-free DLC coating (a-C:15H). In this study, lubricating oils containing a zinc dithiophosphate (ZDDP) antiwear additive and/or organomolybdenum friction modifiers (moly dimer and moly trimer) were used. Tribological tests were carried out in a pin-on-plate tribometer under boundary lubrication conditions. To understand the effect of additives, tribofilms formed on the wear tracks were analyzed using surface sensitive analytical techniques such as atomic force microscope, scanning electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy. Results showed that the ZDDP formed a zinc phosphate containing an ultrathin antiwear tribofilm, which offered excellent durability/wear protection to the a-C:15H coating. However, the antiwear performance of this additive was compromised when it was used with moly dimer or moly trimer. Surface analysis revealed that unlike steel surfaces, MoS2 formed on the DLC surfaces had negligible influence on friction, while the low friction DLC wear debris had strong influence on friction. Abrasive wear was found to be the dominating wear mechanism in the cases when additives showed poor wear protection on the a-C:15H coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call