Abstract
The paper presents the results of a series of field tests performed to study the causes of friction fatigue experienced by displacement piles. Four instrumented model piles were installed at a dense sand test-bed site. The test series was designed to impose different levels of cyclic loading during pile installation. Static and cyclic load tests were subsequently performed to study the differences in the axial capacities developed for ostensibly monotonic and cyclic installations. The test results indicated that the mobilized horizontal effective stress regime that controls pile side friction primarily depends on the in situ sand state, as reflected by the cone penetration test (CPT) qc resistance. A zone of highly stressed sand that produced a concentration of high shear resistance was mobilized in the vicinity of the pile base. The horizontal effective stress that acted on the pile shaft reduced in response to cyclic loading, with the largest reductions occurring for high-intensity cyclic loading or when the pile had experienced only a few load cycles during installation. Although cyclic loading caused a reduction in the horizontal effective stress that acted on the pile shaft, the elevated stress built up in the vicinity of the pile base during installation remained higher than that remote from the base. The elevated stress in the vicinity of the pile base only dissipated after cyclic tension loading had been applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.