Abstract
The application of radial and axial-centrifugal compressors in turboprop, turboshaft and turbofan engines may require the construction of small diameters diffuser in order to obtain lower weight and smaller frontal area. Conventional exhaust diffusers typically have large outlet diameters for exit Mach numbers lower than 0.2 and low swirl flow to the combustor, hence the design of channel of the low-diameter diffusers called controlled-contour, fishtail-shaped diffuser or diffusing trumpet is complex. The cross-sectional shape of these channels is varied from circular to oval to elliptic and to rectangular. The paper presents an original method for determining the flow parameters in the channel and at the outlet section of the downstream diffusing trumpet for a pipe diffuser, which constitutes the downstream duct of the radial or axial-centrifugal compressor with the pipe diffuser. It also illustrates a new method for determining the geometrical parameters of the diffuser. Mentioned methods (for conceptual design of a compressor with pipe diffuser) are based on Pythagorean theorem, properties of ellipse, equation of continuity, energy equation, first law of thermodynamics, Euler’s moment of momentum equation, gasodynamic functions and definitions used in theory of turbo-machines. The final part of the article includes principles of selection of the computational value pressure ratio for the compressor with the pipe diffuser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Scientific Letters of Rzeszow University of Technology - Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.