Abstract

Different friction bearing ratios have effects on the base isolation property of parallel composite isolation system subjected to the seismic excitation. In order to deeply investigate how the friction bearing ratio affect the isolation property, the numerical simulation was carried out by the time-history analysis method, in which the seismic response of parallel composite isolation system with different friction bearing ratios under different acceleration peak values were calculated. Then, the effects of different friction bearing ratios on the base maximum shear coefficients and base maximum displacements; the hysteretic characteristics and nonlinear properties were analyzed and discussed. The results show that, for the parallel composite isolation system, friction bearing ratio is a key factor affecting the isolation property and the nonlinear properties are tightly related to the friction bearing ratio and acceleration peak values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.