Abstract

In this article, molecular dynamics simulations were performed to study the effect of irradiation damage on the tensile and shock compression behaviour of multi-elemental alloys (medium and high entropy alloys). These simulations were divided into three broad stages; in the first section, a displacement cascade was generated in the simulation box using primary knock-on atoms (PKA) with kinetic energy in the range of 0.25 to 2 keV. In the second stage, the same defected crystal was subjected to tensile loading to study the deformation mechanism of multi-elemental alloys containing these irradiation-induced defects. In the last stage, tensile loading was replaced by ultrashort shock pulse loading. Irradiation damage significantly alters the tensile strength of Fe–Ni–Co–Cr–Cu and Fe–Ni–Cr alloys. The primary deformation governing mechanism is the spatial distribution of stacking faults and partial dislocations during deformation. Lattice distortion reduces the tensile strength of multi-elemental alloys compared to A-atom configurations. In shock loading, the shock resistance capability of irradiated Fe–Ni–Co–Cr–Cu was better than Fe–Ni–Cr alloy. Lattice distortion in random multi-elemental alloys helps in mitigating the shock propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.