Abstract

Kinetics of texture development during frying of snacks subjected to different initial conditions such as frozen, frozen–thawed, and unfrozen was investigated. The temperature dependency of the changes in the form of reaction constants was explained by Arrhenius equation. The increase in hardness and decrease in cohesiveness followed first-order reaction kinetics (R 2 = 0.94–0.99) in all the samples. Frozen samples showed induction (phase I) and development/degradation (phase II) periods for textural parameters during frying. The activation energies for hardness were 33.81, 25.63, 19.09, and 20.13 kJ/mole for frozen (phase I and II), frozen–thawed, and unfrozen samples, respectively with the R 2 = 0.96–0.99. Frozen samples showed high activation energies for textural parameters during frying as compared to the frozen–thawed and unfrozen samples. The increase in chewiness was found to follow the kinetics of zero-order reaction for all the samples. Temperature and time were found to have a significant effect (P < 0.01) on the changes in textural profile during frying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call