Abstract

Several studies have shown that freeze–thaw causes changes in the hydraulic conductivity of compacted clays. Cracks formed by ice lensing and shrinkage cause the hydraulic conductivity to increase. In this paper, changes in hydraulic conductivity are related to changes in morphology. Photographs of thin sections of frozen specimens show that ice lenses form in compacted clay during freezing in a closed system. Photographs also show that similar ice structures are obtained for one- and three-dimensional freezing, which explains why similar hydraulic conductivities are obtained for both conditions. The photographs also show that a significant network of cracks forms in a single cycle of freeze–thaw. With additional cycles, new ice lenses are created and thus the hydraulic conductivity continues to increase. However, after about three cycles the number of new ice lenses becomes negligible and hence further changes in hydraulic conductivity cease. The temperature gradient and state of stress affect morphology and hydraulic conductivity of compacted clays subjected to freeze–thaw. At larger temperature gradients, more ice lenses form and hence the hydraulic conductivity increases. In contrast, application of overburden pressure inhibits the formation of ice lenses and reduces the size of the cracks remaining when lenses thaw. As a result, the hydraulic conductivity is reduced. Key words : compacted clay, hydraulic conductivity, clay liners, soil liners, freeze-thaw, ice lenses, structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.