Abstract

Erythropoietin (EPO) was successfully incorporated into a bioadhesive thermosensitive hydrogel based on trimethyl chitosan (TMC)/β-glycerophosphate (GP) for prevention and treatment of oral mucositis in cancerous patients. The aim of the present study was to evaluate the effect of freeze drying on thermo-responsive property of the hydrogel and structural stability of the loaded protein. The freeze-dried EPO-loaded hydrogel were characterized using various methods. Gelation property by rheological analysis, EPO aggregation in formulations by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), protein secondary structure by far ultraviolet-circular dichroism (CD), and the antigenic activity of EPO with ELISA techniques. The healing effects of the freeze-dried formulation was also investigated in Sprague-Dawley rats with chemotherapy-induced mucositis and compared with freshly prepared mixture. Finally, the retention time of the gel in the oral cavity was assessed in healthy volunteers. SDS-PAGE, CD, and ELISA confirmed the stability of conformational structure of loaded and released EPO. Severity of mucositis was markedly reduced in animals treated with freeze-dried EPO hydrogel; whereas the group received normal saline did not show any significant healing. EPO salvia level was decreased rapidly following EPO solution compared to the gel application. Approximately, 40% of EPO was maintained on the buccal areas in patients receiving the hydrogel system after 30 min. Therefore, the TMC/GP could preserve EPO stability after freeze drying and has the potential in the treatment of oral mucositis and other oral or subcutaneous wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.