Abstract
The probability of capsize of purse seiners in irregular beam seas and the effect of freeboard height and metacentric height on trapped water on the deck was investigated. The aim was to quantify a safety level that can be achieved by direct stability assessment for this type of fishing vessel. The amount of trapped water on deck was numerically estimated using a hydraulic flow assumption. The long-term capsizing probabilities were estimated using a piecewise linear approach together with wave statistics from major Japanese fishing areas. The estimated safety level of capsizing probability was compared with that obtained by the IMO weather criterion and by the water-on-deck criterion of the IMO Torremolinos Convention. Numerical results for four typical Japanese purse seiners indicated that the effect of freeboard, on the amount of trapped water on deck, is more important than that of the metacentric height. Besides the metacentric height and the freeboard, it was shown that the danger of capsizing is a function of the rise of floor. The safety level obtained by the capsizing probability approach is generally higher than that based on the IMO weather criterion. However, the water-on-deck criterion provides a higher safety level than the capsizing probability approach for ships with a low rise of floor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Marine Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.