Abstract
A joint analytical-experiment program to investigate the effect of fracture surface interference on shear modes of crack growth is progressing satisfactorily. A general two-dimensional, boundary element model has been formulated by the group at Ohio State University that is capable of calculating the effective Mode I and Mode II stress intensity factors for flat or curved cracks with small scale yielding. The model can calculate K{sub I} and K{sub II} for an arbitrary constitutive law for displacement of the crack faces. The constitutive law proposed in our earlier work is being used in the new boundary element model. The experimental portion of the effort at UNH was to use an as-yet undeveloped electro-optic holographic interferometry (EOH) system to measure the crack face displacement field while the crack is loaded in shear. The algorithms for obtaining the interferograms have been developed, the testing machine modifications necessary for interferometric measurements are complete, and interferograms of specimens under load have been obtained. Techniques for digitizing the fracture surface profile have been developed and preliminary numerical experiments have been conducted to determine the {Delta}K dependence of fracture asperity interference on an actual crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.