Abstract
The effect of fracture roughness is investigated on proppant transport in hydraulic fractures using Joint Roughness Coefficient and a three-dimensional multiphase modelling approach. The equations governing the proppant transport physics in the fracturing fluid is solved using the hybrid computational fluid dynamics model. The reported proppant transport models in the literature are limited to the assumption of a smooth fracture domain with no fluid leak-off or fluid flow from fracture to rock matrix interface. In this paper, a proppant transport model is proposed that accounts for the proppant distribution in rough fracture geometry with fluid leak-off effect to surrounding porous rock. The hydrodynamic and mechanical behaviour of proppant transport was found directly related to the fracture roughness and flow regime especially under the influence of low viscosity fracturing fluid typically used in shale gas reservoirs. For the proppant transport in smooth fractures, the fracture walls employ mechanical retardation effects and reduce the proppant horizontal velocity resulting in more significant proppant deposition. On the contrary, for the proppant transport in rough fractures, the inter-proppant and proppant wall interactions become dominant that adds turbulence to the flow. It results in mechanical interaction flow effects becoming dominant and consequently higher proppants suspended in the slurry and greater horizontal transport velocity. Furthermore, the mechanical interaction flow effects were found to be principally dependant on the proppant transport regime and become significant at higher proppant Reynolds number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.