Abstract

Alignment requirements for the National Ignition Facility (NIF) optical components will require a number of support structures which minimize the system displacements and deformations. The stringent design requirements for this facility will result in a system in which vibrations due to ambient environmental loads (e.g. foundation motion due to typical traffic loads, microseisms or nearby equipment) will have a significant, and perhaps predominant, influence on the design of the supporting structures. When considering the total deformations and displacements of the structural systems, the contribution of the foundation to the overall system flexibility must be addressed. Classical fixed-base structural analyses, which are predicated on an assumption of an infinitely rigid foundation system, neglect the influence of foundation flexibility and for the vibration regime in which the NIF structures reside, may result in significant underestimation of the system ambient vibration displacements. In the work described herein, parametric studies were performed in order to understand the potential contributions of soil-structure- interaction (SSI) to optical system displacements. Time domain finite element analyses were employed to quantify the effect of wave scattering by the mat foundation and the effects of inertial SSI due to the rocking of the massive shear wall support structures. A simplified procedure is recommended for accounting for SSI effects in the design of the special equipment structures. The simplified approach consists of applying a scale factor to displacements obtained from fixed base analyses to approximately account for the effects of soil-structure interaction and variable support input motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call