Abstract

The influence of the matrix composition and structure on the capacity of asparaginase to reduce acrylamide formation in biscuits was studied. In particular, formulations differing for water (10 to 20% on total weight) and fat (0 to 15% on total weight) content, fat type (margarine, palm oil) and lipid phase distribution were considered. In the latter case, palm oil was substituted with a monoglyceride–palm oil–water gel (hydrogel). The results showed that high water contents, by favoring precursor mobility, promoted acrylamide formation as well as the enzyme capability of reducing the toxic molecule levels in the final product. On the contrary, the presence of fat significantly reduced acrylamide development and enzyme activity as compared with the fat free formulation. It can be hypothesized that the presence of fat would hamper the interaction between the precursors in the aqueous phase, leading to lower amounts of acrylamide. By substituting fat with hydrogel, the biscuit behaved as a fat free system, where acrylamide formation as well as its reduction by means of asparaginase activity was higher than in the fat-containing biscuits. It is likely that the inclusion of palm oil in the dough through the hydrogel modified the system morphology, thus not hampering the encounter among reactants and consequently favoring acrylamide formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call