Abstract

AbstractScanning electron photomicrographs of U–10 wt.% Mo irradiated at low temperature in the Advanced Test Reactor (ATR) to about 40 at.% burnup show the presence of cavities. We have used a rate-theory-based model to investigate the nucleation and growth of cavities during low-temperature irradiation of uranium-molybdenum alloys in the presence of irradiation-induced interstitial-loop formation and growth. Our calculations indicate that the swelling mechanism in the U–10 wt.% Mo alloy at low irradiation temperatures is fission-gas driven. The calculations also indicate that the observed bubbles must be associated with a subgrain structure. Calculated bubble-size-distributions are compared with irradiation data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.