Abstract

To evaluate the effect of formalin fixation on biexponential modeling of diffusion decay in prostate tissue. Three whole prostate specimens were imaged unfixed immediately postsurgery, and again after formalin fixation. Diffusion-weighted imaging was performed over an extended range of b-values and a biexponential model fitted to the signal decay curves. Tissue fixation resulted in a 35%, 20%, and 20% reduction in mean apparent diffusion coefficient of the higher diffusivity fit component for the three organs, respectively, and a 64%, 57%, and 45% reduction in mean apparent diffusion coefficient of the lower diffusivity component. The mean signal fraction of the higher diffusivity component was increased by 23%, 5%, and 1%, respectively. The effect of fixation did not appear to vary according to tissue type or glandular zone. Formalin fixed tissue appears to provide a stable model for detailed investigation of the microscopic biophysical basis of diffusion phenomena observed in vivo. Diffusivity changes that result from fixation may provide information about the microscopic environments of the biexponential components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.