Abstract
A new high-temperature titanium alloy containing erbium was designed and fabricated. The influence of α+β forging process and β forging process on microstructure and mechanical properties of the alloy was studied. The microstructure, mechanical properties and fracture morphologies of the new high-temperature titanium alloy after different forging processes were characterized. The results showed that the forging process significantly affected the microstructure of the alloy. The alloy exhibits nearly equiaxed microstructure and lamellar microstructure after α+β and β forging, respectively. In addition, there were Er-rich phases in both forged alloys. The alloy with nearly equiaxed microstructure acquired a satisfactory comprehensive performance. However, the alloy with lamellar microstructure had higher strength and less plasticity. The tensile fracture of the alloy after α + β forging had more dimples, while cleavage plane was obvious in the alloy after β forging. Owing to the addition of erbium and the formation of Er-rich phases, forged alloys possess excellent strength. The Er-rich phase might be the main reason for the fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.