Abstract
BackgroundForest stand density in tropical rainforests is crucial functional and structural variable of forest ecosystems in which above ground biomass can be derived. Currently, there is a growing demand for airborne and terrestrial LIDAR in measuring forest trees parameters for accurate assessment of forest biomass/carbon stock to meet the requirements of UN-REDD + program. Although several studies have been conducted on above ground biomass/carbon stock in tropical rainforest using forest inventory parameters derived from airborne and terrestrial LIDAR, no research was conducted on how the estimation of above ground biomass/carbon stock using airborne and terrestrial LIDAR derived parameters is affected by forest stand density in a tropical rainforest. Therefore, this study aims to analyze and investigate the strength of the relationship between forest stand density and its above ground biomass estimated using airborne and terrestrial LIDAR derived trees parameters. Purposive sampling approach was adopted for the selection of the unit of analysis. Results are based on data collected from 32 sample plots measured and scanned in the field. Airborne LIDAR was used to derive upper canopy trees height, while terrestrial LIDAR was used to derive the height of lower canopy trees and DBH of all lower and upper canopy trees. The DBH measured in the field was used to compute forest stand density and to validate the DBH manually extracted from TLS point cloud data. The DBH manually derived from TLS point cloud data was used to estimate AGB of the sampled plots for both upper and lower canopy trees.ResultsDescriptive statistics, linear regression and correlation analysis were used to answer the research questions of this study. Out of 1033 trees measured and scanned in the field, 855 trees (82.7%) were extracted from TLS point cloud data and 178 trees (17.3%) were missed due to occlusion. The Pearson correlation coefficient (r) between a total number of trees measured and scanned in the field and the total number of trees extracted from TLS point cloud data was 0.95. R2 of 0.89 was found to explain the relationship between number of missed trees per plot against a number of trees measured in the field per plot. The strength of the effect of forest stand density on AGB is explained by R2 which is 0.91.ConclusionsBased on the findings, forest stand density have significant effect on above ground biomass at 1% significance level. Since there is a strong relationship between forest stand density and AGB and the measurement of forest stand density from the ground is fast, forest stand density could be recommended as a proxy to estimate above ground biomass.
Highlights
Forest stand density in tropical rainforests is crucial functional and structural variable of forest ecosystems in which above ground biomass can be derived
Background of the study Forest above ground biomass (AGB) is a very important parameter used for forest productivity and carbon balance assessment (Nie et al 2017)
Individual tree extraction from terrestrial laser scanner (TLS) point cloud data The extraction of individual tree varies from one sample plot to another
Summary
Forest stand density in tropical rainforests is crucial functional and structural variable of forest ecosystems in which above ground biomass can be derived. This study aims to analyze and investigate the strength of the relationship between forest stand density and its above ground biomass estimated using airborne and terrestrial LIDAR derived trees parameters. As explained by Putz et al (2008) in tropics despite improvement in forest management practices, still there are destructions during timber harvesting because most logging operations are still carried out by untrained and unsupervised tree fellers. This traditional logging practice aggravates the forest degradation in tropics, and it leads to low forest stand density
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.