Abstract

The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (Solanum lycopersicum L.), watercress (Nasturtium officinale), chili pepper (Capsicum annuum), peas (Pisum sativum L.), chickpea (Cicer arietinum) and beans (Vicia faba) under greenhouse conditions. The FWC and NFCE were physico-chemically and microbiologically characterized. The NFCE effect was evaluated on tomato, watercress, and chili pepper seeds germination and seedling growth. However, for leguminous, pea, chickpea and bean seedlings, the FWC amended soils and irrigated with NFCE were tested for plants growth. The results of FWC analyses revealed that FWC has neutral pH, low EC and C/N ratio, with fertilizing elements (N, P, K and Mg) and lack of phytotoxic effect. The NFCE was characterized by low EC and relatively high carbon content (COD = 9700 mg/l), and intense microbial activity, notably mesophilic bacteria. Therefore, in fermented compost extract, mesophilic bacteria were increased by 225, yeasts by 25 and molds by 10 times compared to those of the investigated compost. In greenhouse, the diluted NFCE increased significantly (p< 0.05) germination and growth of the tested seedlings. Used alone, the FWC amended soil or the NFCE irrigated soil, improved the growth of tested seedlings. The use of soil amended with compost and irrigated by fermented compost extract decreased significantly the growth of the same experimented seedlings. Therefore, the FWC and its fermented extract were a suitable substrate for germination and growth of the studied seeds.

Highlights

  • Around 1.3 billion tons of food wastes are produced in the world [1] [2]

  • The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (Solanum lycopersicum L.), watercress (Nasturtium officinale), chili pepper (Capsicum annuum), peas (Pisum sativum L.), chickpea (Cicer arietinum) and beans (Vicia faba) under greenhouse conditions

  • Voběrková et al [2] showed an acidic pH of food waste compost around 6 that would be caused by organic acidic metabolism

Read more

Summary

Introduction

Around 1.3 billion tons of food wastes are produced in the world [1] [2]. These wastes may have some negative environmental impacts, such as soil erosion, deforestation, water and air pollution, as well as greenhouse gas emissions that occur in the processes of food production, storage, transportation, and waste management [3] [4]. Along the food supply chain, private households represent the largest food-waste fraction [5]. Considering the huge amounts of food waste produced at the household level, the prevention of such fermentescible waste at the final stages of the supply chain is of utmost importance to help preventing further climate change. The choice of the technology to be applied depends on criteria in relation with the waste typology as well as the available means

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call