Abstract
The capacity of small mammals to sustain periods of food shortage largely depends on the adaptive regulation of energy budget in response to the decrease in food supply. In addition to food availability, ambient temperature (Ta) is an important factor affecting the rates of both energy intake and expenditure. To examine the effect of Ta on energy strategy and the capacity to sustain food shortage, striped hamsters were exposed to a warm condition (30°C) and were then restricted to 70% of ad libitum food intake. Body mass, energy intake and expenditure and physiological markers indicative of thermogenesis were measured. Warm exposure had no effect on body mass and digestibility, but decreased energy intake, basal metabolic rate and maximum nonshivering thermogenesis. The mitochondria protein content, cytochrome c oxidase activity and uncoupling protein 1 level of brown adipose tissue were significantly lower in hamsters at 30°C than at 21°C. Food restriction induced a significant decrease in body mass, but the decreased body mass was attenuated at 30°C relative to 21°C. This suggests that striped hamsters could not compensate for the limited food supply by decreasing daily energy expenditure at 21°C, whereas they could at 30°C. The significant reductions in the rates of metabolism and thermogenesis in warm-acclimated hamsters increase the capacity to cope with food shortage. Although, it remains uncertain whether this response represents some generalized evolutionary adaptation, the Ta-dependent adjustment in the capacity to survive food restriction may reflect that warm acclimation plays an important role in adaptive regulation of both physiology and behavior in response to the variations of food availability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.