Abstract

The aim of this study was to assess the effect of follicular size on estradiol (E2) and progesterone (P4) levels in intrafollicular fluid, ATP content in oocytes, and the embryo development rate in prepubertal sheep. Slaughterhouse ovaries were dissected to recover the follicles, which were classified according to the follicle diameter as <3 mm (n = 20) and ≥3 mm (n = 17). Then, follicular fluid was obtained and analyzed by radioimmunoassay to determine the E2 and P4 concentrations. Another group of ovaries was used to recover cumulus-oocyte complexes according to follicle size. In vitro maturation (IVM), in vitro fertilization (IVF), and embryo culture were performed using standard procedures, and ATP level was assessed at 0 and 24 h of IVM. Intrafollicular concentrations of E2 and P4 and E2:P4 ratio were higher in ≥3 mm (18.7 ± 5.9 ng/mL, 7.8 ± 1.2 ng/mL, and 3.6 ± 1.3, respectively) than <3 mm (1.8 ± 0.4 ng/mL, 2.6 ± 0.3 ng/mL and 0.9 ± 0.3, respectively) follicles. The rate of ATP increased during IVM and was higher in oocytes from ≥3 mm than <3 mm (22.4 ± 0.7 and 8.6 ± 2.2-fold change; respectively) follicles. After IVF, the blastocyst development was higher in oocytes recovered from ≥3 mm (11.1 ± 0.9%) than from <3 mm (6.5 ± 0.7%) follicles. These results indicate an improvement in the competence and development of oocytes from ≥3 mm follicles with a higher E2:P4 ratio. Thus, this ratio could be used as reference to design IVM medium and to enhance the in vitro embryo production in lambs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.