Abstract

The premature deterioration of concrete structures in aggressive environments has necessitated the development of high performance concrete (HPC). The major difference between conventional concrete and HPC is essentially the use of chemical and mineral admixtures. The improved pore structure of HPC achieved by the use of chemical and mineral admixtures causes densification of paste-aggregate transition zone, which in turn affects the fracture characteristics. Hence, studies were taken up to investigate the effect of fly ash and slag on the fracture characteristics of HPC. Beam specimens (geometrically similar and single size variable notch) with locally available fly ash (25%) and slag (50%) as cement replacement materials were prepared and tested in a servo-controlled Universal Testing Machine (UTM) under displacement control. From the value of the peak load for each beam, various fracture parameters were calculated. The results show that there is a reduction in the fracture energy due to addition of fly ash or slag, which can be attributed to the presence of unhydrated particles of size larger than that of normal flaws in concrete. Also due to densification, the post peak behaviour is steeper for the fly ash or slag based HPC mixes. The results of the investigation are presented in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call