Abstract
Various fluxing materials are added to technical ceramics in an attempt to lower their sintering temperatures and make their processing economical. The effect of 0·3 wt% Li2CO3 addition on the phase, microstructure, phase transition temperatures and dielectric properties of BaTiO3 was investigated in the present study. The addition of 0·3 wt% Li2CO3 was observed to lower the optimum sintering temperature by ∼200°C with no second phase formation and cause a five-fold reduction in grain size. Rhombohedral-to-orthorhombic and tetragonal-to-cubic phase transitions at the expected temperatures were evident from the Raman spectra, but the orthorhombic-to-tetragonal phase transition was not clearly discernible. The persistence of various phase(s) at higher temperatures in the flux-added materials indicated that the phase transitions occurred relatively slowly. A decrease in dielectric constant of Li2O-added BaTiO3 in comparison to pure BaTiO3 may be due to the diminished dielectric polarizability of Li + in comparison to Ba2 + .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.