Abstract

Silicon anode is a promising candidate as an alternative to the conventional graphitic anode in lithium-ion batteries. In this work, silicon anode is modified by NH4F using a facile method in air. The concentration of NH4F on the electrochemical performance is systematically checked. The 5wt%NH4F-modified silicon anode exhibits enhanced cycle and rate performances, the first discharge specific capacity is 3958 mAh·g-1 with 86.45% as the coulombic efficiency at 0.4A·g-1. The capacity can maintain at 703.3 mAh·g-1 after 50 cycles, exhibiting a much better cycle stability than pristine silicon anode (329.9 mAh·g-1 after 50 cycles). SEM images confirm that NH4F can alleviate the volume expansion of silicon since LiF can be generated at the surface which is beneficial to the stability of solid-electrolyte interphase (SEI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.