Abstract
Chirality is a very important characteristic of optically active molecules and polyaromatics with helical structures, and plays a vital role in various applications in material science. In the present work, we show the effects of fluorine substitution at various positions in a figure-8-shaped [5]helicene dimer on the ground and excited state $g$-factors. Calculations for the ground and excited states are performed at the MP2 and ADC(2) levels of theory, respectively. The results reveal that fluorination has a large effect on the excited state structures. The values of the excited state dissymmetry factors for the molecules with fluorinations at both ends of the figure-8 systems are smaller than that of the parent system. On the other hand, fluorinations only in the stacked-phenyl region results in an increase in the value of |gcpl|. The perfluorinated system shows the smallest |gcpl|.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.