Abstract
The complexation of 3-, 4-, and 6-fluorosalicylic acids (HL) with copper(II) was investigated in aqueous solution by pH-potentiometry combined with UV–visible spectrophotometry, and in 50v/v % water–methanol mixture by the two-dimensional ESR simulation method. Both methods showed the formation of [CuLH−1] and [CuL2H−2]2− of high stabilities, and, at low excess of ligand, the ESR-silent mixed hydroxido complex [Cu2L2H−3]−. Further species were also identified by the two-dimensional ESR simulation method: [CuL]+ in the acidic region, the minor dimer [Cu2L2H−2], and the cis and the trans isomers for [CuL2H−2]2−. The position of the fluorine atom in the aromatic ring had significant effect on the coordination abilities of the ligands, in good correlation with their reported biological activities. It was 3-fluorosalicylic acid, which formed the most stable complexes [CuLH−1] and [CuL2H−2]2−, while the mononuclear complexes with 6-fluorosalicylic acid were found to be the least stable. For the other ligands (including 5-fluorosalicylic acid studied recently), complexes of medium stabilities were formed. For the interpretation of these findings, ab initio and semi-empirical quantum chemical calculations were carried out for the ligand molecules, isolated and surrounded by water molecules, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.