Abstract

Fluorinated conjugated polymers have been widely used in high performance polymer solar cells, but they showed limited application in field-effect transistors (FETs). In this paper, we focus on the influence of fluorine atoms upon charge transport of conjugated polymers in FET devices. Two series of conjugated polymers without or with fluorine atoms were designed and applied into FETs. Nonfluorinated conjugated polymers show high hole mobilties up to 11.16 cm2 V–1 s–1, while fluorinated polymers exhibit low hole mobilities below 1.80 cm2 V–1 s–1. Further investigation by differential scanning calorimetry (DSC) and 2D grazing-incidence wide-angle X-ray scattering (2D-GIWAXS) reveal that fluorinated conjugated polymers show low crystallinity and “face-on” orientation in thin films, explaining their poor hole mobilities in FET devices. Our results clearly show how the chemical structures influence the charge transport properties, which can be used to design new conjugated polymers toward high performance FETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.