Abstract

The effects of fluorinated analogues on the anaerobic transformation of phenol to benzoate were examined. At greater than or equal to 250 microM 2- or 3-fluorophenol, phenol transformation was delayed. 2-Fluorophenol had no apparent effect on subsequent degradation of benzoate, but benzoate accumulated in the presence of greater than or equal to 250 microM 3-fluorophenol. In contrast, 4-fluorophenol at less than or equal to 2 mM had no effect on either phenol transformation or benzoate degradation. Phenol and 2-, or 3-fluorophenol were transformed simultaneously, but phenol was transformed more rapidly than either fluorophenol. Thus, fluorinated analogues of phenol did not prevent anaerobic transformation of phenol to benzoate. 2-Fluorophenol was converted to 3-fluorobenzoate, and phenol enhanced the rate and extent of its transformation. 3-Fluorophenol was transformed to 2-fluorobenzoate to a limited extent (approximately 3%) when phenol was present. 4-Fluorophenol was not transformed regardless of the presence of phenol. 3-Fluoro-4-hydroxybenzoate, a potential fluorinated intermediate product of para-carboxylation, was transformed rapidly to 2-fluorophenol and 3-fluorobenzoate, irrespective of the presence of phenol, indicating that both dehydroxylation and decarboxylation occurred. Initially, 2-fluorophenol and 3-fluorobenzoate were rapidly formed in an approximate molar ratio of 2:1. Once 3-fluoro-4-hydroxybenzoate was completely removed, the 2-fluorophenol, initially formed, was converted to 3-fluorobenzoate at a slower rate. Thus, phenol enhanced transformation of the fluorinated analogues, and the products of transformation suggested para-carboxylation. 3-Fluoro-2-hydroxybenzoate was not transformed in either the presence or absence of phenol, indicating that ortho-carboxylation did not occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call