Abstract
Excessive exposure of fluoride not only leads to damage on bone, but also has an adverse effect on soft tissues. Oxidative DNA damage induced by fluoride is thought to be one of the toxic mechanisms of fluoride effect. However, the dose-response of fluoride on oxidative DNA damage is barely studied in organisms. This study investigated the concentration of fluoride in rat blood, kidney, liver, and brain as well as the dose-time effect of fluoride on the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the above tissues. Rats were exposed to 0mg/L, 25mg/L, 50mg/L, and 100mg/L of fluorine ion and treated for one and three months. The results showed that the accumulation of fluoride in soft tissues was very different. At the first month, blood fluoride was increased, liver and brain fluoride showed a U-shaped change, and kidney fluoride was not significant. At the third month, blood fluoride was altered with an inverted U-shaped change, kidney and brain fluoride increased, but liver fluoride decreased. Both the exposure concentration and the time of exposure had a significant effect on the expression of 8-OHdG in the above tissues. However, the effect patterns of fluoride on these tissues were notably different at different times. At the first month of fluoride treatment, blood, kidney, and liver 8-OHdG decreased with the increasing fluoride concentration. At the third month, blood 8-OHdG showed a U-shaped change, but kidney 8-OHdG altered with an inverted U-shaped change. Liver 8-OHdG increased, while brain 8-OHdG decreased at the third month. Correlation analysis showed that only blood 8-OHdG was significantly inversely correlated with blood fluoride and dental fluorosis grade in both the first and third months. Liver 8-OHdG was negatively and significantly correlated with liver fluoride. There was a weak but nonsignificant correlation between kidney and brain 8-OHdG and fluoride in both tissues. Additionally, blood 8-OHdG was positively correlated with kidney and liver 8-OHdG at the first month and positively correlated with brain 8-OHdG at the third month. Taken together, our data suggests that concentration and time of fluoride exposure had a significant effect on 8-OHdG, but the effect patterns of fluoride on 8-OHdG were different in the tissues, which suggests that the impact of fluoride on 8-OHdG may be a tissue-specific, as well as a non-monotonic positive correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.