Abstract

Five trained men were studied during 2 h of cycling exercise at 67% peak oxygen uptake at 20-22 degrees C to examine the effect of fluid ingestion on muscle metabolism. On one occasion, the subjects completed this exercise without fluid ingestion (NF) while on the other they ingested a volume of distilled deionized water that prevented loss of body mass (FR). No differences in oxygen uptake during exercise were observed between the two trials. Heart rate was lower (P < 0.01) throughout exercise when fluid was ingested, and rectal temperature after 2 h of exercise was lower (38.0 +/- 0.2 and 38.6 +/- 0.2 degrees C for FR and NF, respectively; P < 0.01), as was muscle (vastus lateralis) temperature (38.5 +/- 0.4 and 39.1 +/- 0.5 degrees C for FR and NF, respectively; P < 0.05). Resting muscle ATP, creatine phosphate, creatine, glycogen, and lactate levels were similar in the two trials, as were the postexercise ATP, creatine phosphate, and creatine levels. In contrast, muscle glycogen was higher (P < 0.05) and muscle lactate was lower (P < 0.05) after 2 h of exercise in FR compared with NF. Net muscle glycogen utilization during exercise was reduced by 16% when fluid was ingested (318 +/- 46 and 380 +/- 53 mmol/kg dry weight for FR and NF, respectively; P < 0.05). These results indicate that fluid ingestion reduces muscle glycogen use during prolonged exercise, which may account, in part, for the improved performance previously observed with fluid ingestion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.