Abstract

Effects of laser fluence on the properties of carbon nanostructures produced by laser ablation method in liquid nitrogen have been studied experimentally. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7 ns pulse width and different fluences is employed to irradiate the graphite target in liquid nitrogen. Properties of carbon nanostructures were studied using their UV–Vis–NIR spectrum, TEM images, and Raman scattering spectrum. Two categories of graphene nanosheets and carbon nanoparticles were observed due to variation of laser fluence. Results show that in our experimental condition there is a threshold fluence for producing carbon nanoparticles. With increasing the laser fluence from the threshold, the amount of carbon nanoparticles in suspensions was increased, while the amount of graphene nanosheets was decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call