Abstract
The effect of Flue Gas Recirculation (FGR) during Oxy-Fuel Combustion in a Rotary Cement Kiln was analyzed by using a CFD model applied to coal combustion process. The CFD model is based on 3D-balance equations for mass, species, energy and momentum. Turbulence and radiation model coupled to a chemical kinetic mechanism for pyrolysis processes, gas–solid and gas–gas reactions was included to predicts species and flame temperature distribution, as well as convective and radiation energy fluxes. The model was used to study coal combustion with air and with oxygen for FGR between 30 and 85% as controller parameter for temperature in the process. Flame length effect and heat transfer by convection and radiation to the clinkering process for several recirculation ratios was studied. Theoretical studies predicted a located increase of energy flux and a reduction in flame length with respect to the traditional system which is based on air combustion. The impact of FGR on the oxy-fuel combustion process and different energy scenarios in cement kilns to increase energy efficiency and clinker production were studied and evaluated. Simulation results were in close agreement with experimental data, where the maximum deviation was 7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.