Abstract

This study elucidates the effect of fluctuating soil moisture on the co-metabolic degradation of atrazine (6-chloro-N 2-ethyl-N 4-isopropyl-1,3,5-triazine-2,4-diamine) in soil. Degradation experiments with 14C-ring-labelled atrazine were carried out at (i) constant (CH) and (ii) fluctuating soil humidity (FH). Temperature was kept constant in all experiments. Experiments under constant soil moisture conditions were conducted at a water potential of −15 kPa and the sets which were run under fluctuating soil moisture conditions were subjected to eight drying–rewetting cycles where they were dried to a water potential of around −200 kPa and rewetted to −15 kPa. Mineralization was monitored continuously over a period of 56 d. Every two weeks the pesticide residues in soil pore water (PW), the methanol-extractable pesticide residues, the non-extractable residues (NER), and the total cell counts were determined. In the soil with FH conditions, mineralization of atrazine as well as the formation of the intermediate product deisopropyl-2-hydroxyatrazine was increased compared to the soil with constant humidity. In general, we found a significant correlation between the formation of this metabolite and atrazine mineralization. The cell counts were not different in the two experimental variants. These results indicate that the microbial activity was not a limiting factor but the mineralization of atrazine was essentially controlled by the bioavailability of the parent compound and the degradation product deisopropyl-2-hydroxyatrazine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.