Abstract

Single Ventricle Heart Defects (SVHD) are present in 2 per 1000 live births in the US. SVHD are characterized by cyanotic mixing between the de-oxygenated blood from the systemic circulation return and the oxygenated blood from the pulmonary arteries. In the current practice, surgical interventions on SVHD patients commonly result in the total cavopulmonary connection (TCPC) [1]. In this configuration the systemic venous returns (inferior vena cava, IVC, and superior vena cava, SVC) are directly routed to the right and left pulmonary arteries (RPA and LPA), bypassing the right heart. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Pulsation of the inlet venous flow during a cardiac cycle and wall motion may result in complex and unsteady flow patterns in the TCPC. Although vessel wall motion and different degrees of pulsatility have been observed in vivo, non-pulsatile (time-averaged) flow boundary conditions and rigid walls have traditionally been assumed in estimating the TCPC hemodynamic parameters (such as energy loss). Recent studies have shown that these assumptions may result in significant inaccuracies in modeling TCPC hemodynamics [2, 3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.