Abstract
The nucleotides ATP and ADP regulate many aspects of endothelial cell (EC) biology, including intracellular calcium concentrations, focal adhesion activation, cytoskeletal organization, and cellular motility. In vivo, ECs are constantly under flow, and the concentration of ATP/ADP on the EC surface is determined by the combined effects of nucleotide convective and diffusive transport as well as hydrolysis by ectonucleotidases on the EC surface. In addition, experiments have demonstrated that flow induces ATP release from the cells. Previously computational models have incorporated the above effects and thus described concentration at the EC surface. However, it remains unclear what physical processes are responsible for nucleotide regulation. While some EC responses to flow have been shown to be directly driven by shear stress, others appear to also involve a non-negligible contribution of transport. In the present work, we develop a mathematical model and perform numerical simulations to investigate the relative contributions of shear stress and transport to nucleotide concentration at the EC surface, with the effect of cell density. Because in vitro experiments are performed by using confluent cells in some cases and subconfluent cells in other cases, we also investigate the effect of cell density on the results. The outcomes of the simulations demonstrate a complex interplay between shear stress and transport such that transport has a significant contribution at certain shear stress values but not at others. The effect of transport on nucleotide concentration increases with cell density. The present findings enhance our understanding of the mechanisms that govern the regulation of such molecules at the EC surface under flow. The implications of these findings for downstream responses such as cellular motility merit future investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.