Abstract

The effect of flow history on the linear and non-linear viscoelastic properties of non-polar polymer nanocomposites (PNCs) has been investigated by means of a suitable model system based on a Newtonian matrix. The structural recovery of this model suspension after cessation of different pre-shear rates was monitored by measuring its linear viscoelastic properties while its structural evolution under shear flow was followed by using stepwise changes in shear rate including flow reversal measurements. To assess the kinetics of the structural evolution at rest and under flow, empirical relations of stretched exponential form were used. It is shown that for different pre-shear rates, different equilibrium structures were reached at rest but with a similar kinetics of recovery. As a result, the low frequency behaviour was typical of solid-like or weak gel material, strongly dependent on the flow history. After any given shear rate under steady state, only one reversible equilibrium structure was reached after a kinetics that was dependent on the pre-shear history. Finally, typical flow reversal responses as observed for PNCs are reported and interpreted in light of the microstructure evolution under flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.