Abstract

Results of numerical simulations of methane combustion in a laminar boundary layer on a porous plate with an impermeable initial section are presented. The analysis of results is based on comparisons of data with and without combustion, and also for different initial section lengths including the zero length. The flow history is demonstrated to exert a significant effect on heat transfer and friction in the boundary layer with injection without combustion, whereas the influence of the flow history in the case with combustion is smaller. The phenomenon experiencing the least effect of the flow history is heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.