Abstract

The objective of this study was to determine the effect of flavonoids on midostaurin disposition considering co-administration and metabolic enzyme gene polymorphism. Enzymatic incubation assays were performed in vitro, while in vivo experiments were conducted in Sprague-Dawley rats. The analytes were determined via UPLC-MS/MS. We found that myricetin was the most potent among the investigated 10 flavonoids in suppressing the metabolism of midostaurin, with an IC50 at a low μM level. After co-administration of midostaurin and myricetin, the plasma concentration of midostaurin's primary metabolite CGP62221 was reduced corresponding to myricetin exposure. Furthermore, CYP3A4 homologous rat protein CYP3A2 was reduced significantly in the co-administration group. Thereafter, the kinetic parameters of 23 recombinant human CYP3A4 variants were determined using midostaurin. The relative intrinsic clearance varied from 269.63% in CYP3A4.29-8.95% in CYP3A4.17. In addition, the inhibitory potency of myricetin was substantially different for CYP3A4.29 and CYP3A4.17 compared with wild type, with IC50 values of 9.85±0.27μM and 90.99±16.13μM, respectively. Collectively, our data demonstrated that flavonoids, particularly myricetin, can inhibit the metabolism of midostaurin. Additionally, CYP3A4 genetic polymorphism may contribute to stratification of midostaurin blood exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.