Abstract

Hepatocellular carcinoma is the second most common cause of death due to cancer. Flavonoids have the ability to control cell division and proliferation in cell biology. In medical science, flavonoids show important effects in cancer prevention and therapy. In this research paper, the effect of flavonoid quercetin on the microRNAs and transcription factors related with hepatocellular carcinoma has been investigated. From microarray dataset, regulatory relationship among miRNAs, TFs and target genes from various databases, are analyzed for hepatocellular carcinoma using CMTCN, a web tool. Regulatory interactions of transcription factors and miRNAs and their target genes play important role in cancer science. In presence of flavonoid quercetin, the up and down regulated genes with their regulators are analyzed in details. Gene network with 500 upregulated genes, shows 109 nodes and 132 edges. Result of gene enrichment analysis with KEGG pathway shows that among 24 genes, 7 genes are related with cancer. Among them P53, MDM2 and PTEN are related with p53 signaling pathway. Gene network with top 500 downregulated genes, illustrates network topology with 146 nodes and 177 edges. Gene enrichment analysis using KEGG pathways, reveals that among 36 genes 9 genes are related to cancer. These genes are APC, CTNNB1, PML, TP53, FOS, JUN, CEBPA, PTEN and Bcl 2. Target gene B-cell lymphoma 2 (Bcl 2), which is down regulated in presence of flavonoid quercetin, has been identified. Here quercetin binds to the BH3 domain of Bcl 2 protein and inhibits its activity which leads to cancer cell apoptosis. Several miRNAs can post-transcriptionally regulates the gene expression of Bcl2 gene. Gene network shows that miRNA has-mir-590 inhibits Bcl 2 target gene. NR112 transcription factor can regulate both target gene and its inhibitor miRNA. By analyzing transcription factor- target gene and miRNA- target gene binding the role of flavonoid quercetin in hepatocellular carcinoma can be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.