Abstract

Potential applications of flapping-wing micro-aerial vehicles (MAVs) have prompted enthusiasm among the engineers and researchers to understand the flow physics associated with flapping flight. An incompressible Navier–Stokes solver that is capable of handling flapping flight kind of moving boundary problem is developed. Arbitrary Lagrangian–Eulerian (ALE) method is used to handle the moving boundaries of the problem. The solver is validated with the results of problems like inline oscillation of a circular cylinder in still fluid and a flat plate rapidly accelerating at constant angle of attack. Numerical simulations of flapping flat plate mimicking the kinematics of those like insect wings are simulated, and the unsteady fluid dynamic phenomena that enhance the aerodynamic force are studied. The solution methodology provides the velocity field and pressure field details, which are used to derive the force coefficients and the vorticity field. Time history of force coefficients and vortical structures gives insight into the unsteady mechanism associated with the unsteady aerodynamic force production. The scope of the work is to develop a computational fluid dynamic (CFD) solver with the ALE method that is capable of handling moving boundary problems, and to understand the flow physics associated with the flapping-wing aerofoil kinematics and flow parameters on aerodynamic forces. Results show that delayed stall, wing–wake interaction and rotational effect are the important unsteady mechanisms that enhance the aerodynamic forces. Major contribution to the lift force is due to the presence of leading edge vortex in delayed stall mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call