Abstract
Lithium-ion batteries are being increasingly used and deployed commercially. Cell-level improvements that address flammability characteristics and thermal runaway are currently being intensively tested and explored. In this study, three additives—namely, lithium oxalate, sodium fumarate and sodium malonate—which exhibit fire-retardant properties are investigated with respect to their incorporation into graphite anodes and their electro/chemical interactions within the anode and the cell material studied. It has been shown that flame-retardant concentrations of up to approximately 20 wt.% within the anode coating do not cause significant capacity degradation but can provide a flame-retardant effect due to their inherent, fire-retardant release of CO2 gas. The flame-retardant-containing layers exhibit good adhesion to the current collector. Their suitability in lithium-ion cells was tested in pouch cells and, when compared to pure graphite anodes, showed almost no deterioration regarding cell capacity when used in moderate (≤20 wt.%) concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.