Abstract

Twenty-four adult male African green grivet monkeys were fed diets containing 42% of calories as lard or menhaden oil and 0.76 mg of cholesterol/kcal for a period of 8 months. Plasma samples from fasting animals were then taken and low density lipoproteins (LDL) were isolated by ultracentrifugation and agarose column chromatography. The LDL were analyzed chemically, and physical properties of the particles were studied by differential scanning calorimetry. The fish oil group had significantly smaller LDL (2.91 vs. 3.43 g/mumol), which contained fewer molecules per particle of all lipid constituents, except triglyceride, compared to the lard-fed animals. The fish oil-fed group had 15% of the total cholesteryl esters as n-3 fatty acyl species and the number of n-3, but not n-6, cholesteryl esters per LDL particle was proportional to LDL size. The numbers of saturated and monounsaturated cholesteryl ester species per LDL particle were highly correlated with LDL size for both diet groups. The LDL of the fish oil group had broad reversible thermotropic transitions that were 12-13 degrees C lower than those of the lard group. These transitions were indicative of order-disorder transitions of the LDL core cholesteryl esters. The peak transition temperature of LDL of the lard group was proportional to the ratio of saturated and monounsaturated to polyunsaturated cholesteryl ester species (CEFA ratio). However, the much lower peak transition temperature of the LDL of the fish oil group was not related to the CEFA ratio nor to the triglyceride content of the particles, but rather, to the n-3 cholesteryl ester content of the particles. Studies of cholesteryl ester model systems demonstrated that relatively small amounts of n-3 cholesteryl esters (less than 15% of total cholesteryl ester) could result in a lowering of the peak transition temperature of cholesteryl linoleate similar to that seen for intact LDL. We conclude that n-3 cholesteryl esters in small quantities have a marked disordering effect on the core cholesteryl esters of LDL, resulting in a striking depression of LDL transition temperature. In addition, we conclude that n-3 cholesteryl esters are preferentially utilized relative to n-6 cholesteryl esters to increase the number of cholesteryl esters per LDL particle with LDL enlargement in fish oil-fed animals.

Highlights

  • Twenty-four adult male African green grivet monkeys were fed diets containing 42% of calories a s p d or menhaden oil and 0.76 mg of cholesterol/kcal for a period of 8 months

  • The fish oil diets resulted in a similar percentage reduction of low density lipoproteins (LDL) cholesterol concentration on average (34%), the decrease was not statistically significant

  • The cholesteryl ester fatty acid (CEFA) ratio was significantly correlated with LDL molecular weight for both diet groups, the slope of the line was less for the fish oil group compared to the lard group

Read more

Summary

Introduction

Twenty-four adult male African green grivet monkeys were fed diets containing 42% of calories a s p d or menhaden oil and 0.76 mg of cholesterol/kcal for a period of 8 months. The fish oil-fed group had 15% of the total cholesteryl esters as n-3 fatty acyl species and the number of n-3, but not n-6, cholesteryl esters per LDL particle was proportional to LDL size. The numbers of saturated and monounsaturated cholesteryl ester species per LDL particle were highly correlated with LDL size for both diet groups. The LDL of the fish oil group had broad reversible thermotropic transitions that were 12-13'C lower than those of the lard group These transitions were indicative of order-disorder transitions of the LDL core cholesteryl esters. The peak transition temperature of LDL of the lard group was proportional to the ratio of saturated and monounsaturated to polyunsaturated cholesteryl ester species (CEFA ratio).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call