Abstract

Replacement of >25% of fish meal (FM) with aerobically converted carinata meal (ACCM) in low (200g/kg) animal protein (reference = 200g/kg FM) diets of rainbow trout Oncorhynchus mykiss resulted in reduced growth, partly due to reduced feed consumption and protein utilization. In this study, we determined the effect of FM replacement with ACCM on trypsin activity, apparent digestibility coefficients (ADCs) of protein, and essential amino acid (EAA) or conditionally essential amino acid (CEAA) ADCs and bioavailability. Replacement of FM did not alter protein ADCs or trypsin activity. Replacement of >25% FM reduced all EAA and CEAA ADCs except for arginine and leucine which were only reduced by 75% FM replacement. Only serum free lysine and muscle free histidine were reduced by >25% FM replacement. Muscle free lysine was only reduced by 75% FM replacement. Replacement of FM reduced EAA peak concentrations and resulted in slower release of EAAs in serum. Cumulative total EAAs in serum and muscle decreased with FM replacement. Ratios of EAAs to lysine showed that tryptophan was the most limiting EAA. However, isoleucine, leucine, methionine and phenylalanine were also inadequate for muscle synthesis for the first 9–12 hr following force‐feeding. Optimal time for protein synthesis was ≥36 hr. Although any level of FM replacement did not reduce protein ADCs and trypsin activity, replacement of ≥25% FM reduced EAA ADCs and bioavailability of lysine and histidine, which partly contributed to the observed differences in growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call