Abstract

To determine the mechanism that underlies the effect of shock wave (SW) rate on the performance of clinical lithotripters. The effect of firing rate on the pressure characteristics of SWs was assessed using a fibre-optic probe hydrophone (FOPH 500, RP Acoustics, Leutenbach, Germany). Shock waves were fired at slow (5-27 SW/min) and fast (100-120 SW/min) rates using a conventional high-pressure lithotriptor (DoLi-50, Dornier MedTech America, Inc., Kennesaw, GA, USA), and a new low-pressure lithotriptor (XX-ES, Xi Xin Medical Instruments Co. Ltd, Suzhou, PRC). A digital camcorder (HDR-HC3, Sony, Japan) was used to record cavitation fields, and an ultrafast multiframe high-speed camera (Imacon 200, DRS Data & Imaging Systems, Inc., Oakland, NJ, USA) was used to follow the evolution of bubbles throughout the cavitation cycle. Firing rate had little effect on the leading positive-pressure phase of the SWs with the DoLi lithotriptor. A slight reduction ( approximately 7%) of peak positive pressure (P+) was detected only in the very dense cavitation fields (approximately 1000 bubbles/cm(3)) generated at the fastest firing rate (120 SW/min) in nondegassed water. The negative pressure of the SWs, on the other hand, was dramatically affected by firing rate. At 120 SW/min the peak negative pressure was reduced by approximately 84%, the duration and area of the negative pressure component was reduced by approximately 80% and approximately 98%, respectively, and the energy density of negative pressure was reduced by >99%. Whereas cavitation bubbles proliferated at fast firing rates, HS-camera images showed the bubbles that persisted between SWs were very small (<10 microm). Similar results were obtained with the XX-ES lithotriptor but only after recognizing a rate-dependent charging artefact with that machine. Increasing the firing rate of a lithotriptor can dramatically reduce the negative pressure component of the SWs, while the positive pressure remains virtually unaffected. Cavitation increases as the firing rate is increased but as the bubbles collapse, they break into numerous microbubbles that, because of their very small size, do not pose a barrier to the leading positive pressure of the next SW. These findings begin to explain why stone breakage in SWL becomes less efficient as the firing rate is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.